Abstract

The quantum ergodic conjecture equates the Wigner function for a typical eigenstate of a classically chaotic Hamiltonian with a δ function on the energy shell. This ensures the evaluation of classical ergodic expectations of simple observables, in agreement with Shnirelman's theorem, but this putative Wigner function violates several important requirements. Consequently, we transfer the conjecture to the Fourier transform of the Wigner function, that is, the chord function. We show that all the relevant consequences of the usual conjecture require only information contained within a small (Planck) volume around the origin of the phase space of chords: translations in ordinary phase space. Loci of complete orthogonality between a given eigenstate and its nearby translation are quite elusive for the Wigner function, but our local conjecture stipulates that their pattern should be universal for ergodic eigenstates of the same Hamiltonian lying within a classically narrow energy range. Our findings are supported by numerical evidence in a Hamiltonian exhibiting soft chaos. Heavily scarred eigenstates are remarkable counter-examples of the ergodic universal pattern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.