Abstract

This paper considers local convergence and rate of convergence results for algorithms for minimizing the composite functionF(x)=f(x)+h(c(x)) wheref andc are smooth buth(c) may be nonsmooth. Local convergence at a second order rate is established for the generalized Gauss—Newton method whenh is convex and globally Lipschitz and the minimizer is strongly unique. Local convergence at a second order rate is established for a generalized Newton method when the minimizer satisfies nondegeneracy, strict complementarity and second order sufficiency conditions. Assuming the minimizer satisfies these conditions, necessary and sufficient conditions for a superlinear rate of convergence for curvature approximating methods are established. Necessary and sufficient conditions for a two-step superlinear rate of convergence are also established when only reduced curvature information is available. All these local convergence and rate of convergence results are directly applicable to nonlinearing programming problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.