Abstract
In this paper, we initiate the rigorous mathematical study of the problem of impulsive gravitational spacetime waves. We construct such spacetimes as solutions to the characteristic initial value problem of the Einstein vacuum equations with a data curvature delta singularity. We show that in the resulting spacetime, the delta singularity propagates along a characteristic hypersurface, while away from that hypersurface the spacetime remains smooth. Unlike the known explicit examples of impulsive gravitational spacetimes, this work in particular provides the first construction of an impulsive gravitational wave of compact extent and does not require any symmetry assumptions. The arguments in the present paper also extend to the problem of existence and uniqueness of solutions to a larger class of nonregular characteristic data. © 2015 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.