Abstract

Navigation systems have been vital to transportation ever since man took to the air and sea. Early navigation systems utilized the sextant to navigate by starlight as well as the magnetic needle compass. As electronics and communication technologies improved, inertial navigation systems were developed for use in ships and missile delivery. These systems consisted of electronic compasses, gyro-compasses, accelerometers, and various other sensors. Recently, systems such as LORAN and the Global Positioning System (GPS) have utilized the properties of radio wave propagation to triangulate position. The Local Positioning System (LPS), described in this paper, is an implementation of a limited inertial navigation system designed to be used on a bicycle. LPS displays a cyclist`s current position relative to a starting location. This information is displayed in Cartesian-like coordinates. To accomplish this, LPS relies upon two sensors, an electronic compass sensor and a distance sensor. The compass sensor provides directional information while the distance sensor provides the distance traveled. This information yields a distance vector for each point in time which when summed produces the cyclist`s current position. LPS is microprocessor controlled and is designed for a range of less than 90 miles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.