Abstract

We propose a semiparametric local polynomial Whittle with noise estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the log-spectrum of the short-memory component of the signal as well as that of the perturbation by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also inflate the asymptotic variance of the long memory estimator by a multiplicative constant. We show that the estimator is consistent for d∈(0,1), asymptotically normal for d∈(0,3/4), and if the spectral density is sufficiently smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, n. A Monte Carlo study reveals that the proposed estimator performs well in the presence of a serially correlated perturbation term. Furthermore, an empirical investigation of the 30 DJIA stocks shows that this estimator indicates stronger persistence in volatility than the standard local Whittle (with noise) estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.