Abstract

The local polynomial quasi-likelihood estimation has several good statistical properties such as high minimax efficiency and adaptation of edge effects. In this paper, we construct a local quasi-likelihood regression estimator for a left truncated model, and establish the asymptotic normality of the proposed estimator when the observations form a stationary and α-mixing sequence, such that the corresponding result of Fan et al. [Local polynomial kernel regression for generalized linear models and quasilikelihood functions, J. Amer. Statist. Assoc. 90 (1995), pp. 141–150] is extended from the independent and complete data to the dependent and truncated one. Finite sample behaviour of the estimator is investigated via simulations too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.