Abstract

This paper proposes a new local polynomial modeling (LPM) method for identification of time-varying autoregressive (TVAR) models and applies it to time-frequency analysis (TFA) of event-related electroencephalogram (ER-EEG). The LPM method models the TVAR coefficients locally by polynomials and estimates the polynomial coefficients using weighted least-squares with a window having a certain bandwidth. A data-driven variable bandwidth selection method is developed to determine the optimal bandwidth that minimizes the mean squared error. The resultant time-varying power spectral density estimation of the signal is capable of achieving both high time resolution and high frequency resolution in the time-frequency domain, making it a powerful TFA technique for nonstationary biomedical signals like ER-EEG. Experimental results on synthesized signals and real EEG data show that the LPM method can achieve a more accurate and complete time-frequency representation of the signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call