Abstract
Local polynomial smoothing for the trend function and its derivatives in nonparametric regression with long-memory, short-memory and antipersistent errors is considered. We show that in the case of antipersistence, the convergence rate of a nonparametric regression estimator is faster than for uncorrelated or short-range dependent errors. Moreover, it is shown that unified asymptotic formulas for the optimal bandwidth and the MSE hold for all of the three dependence structures. Also, results on estimation at the boundary are included. A bandwidth selector for nonparametric regression with different types of dependent errors is proposed. Its asymptotic property is investigated. The practical performance of the proposal is illustrated by simulated and real data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.