Abstract

Dendrites of different neurons have their own characteristic structures [1]. Global planar structures have been observed in Purkinje cells and retinal ganglion cells. Further, local planar dendritic structures have been discovered in the pyramidal neurons of the rabbit visual cortex [2]. Given an enclosing bundle of parallel fibers, the global planar dendritic structures of Purkinje cells can be explained as a minimization of total dendritic and path lengths (from synapses to soma) [3]. We investigated whether a similar minimization approach can explain local dendritic structures and conducted two types of Monte Carlo simulation studies of local dendritic angles. In the first study, the coordinates for each point were determined at random from a uniform distribution and then the resulting points were connected randomly. The mean of resulting cone angles was close to 90 degrees (Figure 1). In the second study, randomly chosen points were connected to minimize the local connection length. Interestingly, the resulting cone angle distribution had its peak close to 180 degrees (Figure 2), implying that the local planar structures observed in the biological system [2] can be obtained by minimization of local connection length. Furthermore, we discovered that essentially the same distribution of local dendritic angles as the one in Figure 2 could be achieved when a parent point located at the center of the sphere branches uniformly to the local area. This is due to the fact that there is a higher probability of sampling coordinates that result in wide angles. Hence, previously suggested mechanisms for local planar structure, such as tension or forced equilibria between the parent and daughter segments [5], should be revisited under the naturally occurring distribution (Figure 2). Besides, the finding that most neuron types indeed have local planar structures further supports our result. from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. 18–23 July 2009

Highlights

  • Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf

  • Given an enclosing bundle of parallel fibers, the global planar dendritic structures of Purkinje cells can be explained as a minimization of total dendritic and path lengths [3]

  • We investigated whether a similar minimization approach can explain local dendritic structures and conducted two types of Monte Carlo simulation studies of local dendritic angles

Read more

Summary

Introduction

Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf . Address: 1Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0411, Japan, 2Mathematical Biology Unit, Okinawa Institute of Science and Technology, Okinawa 904-2234, Japan and 3Theoretical Neurobiology, University of Antwerp, B-2610 Antwerpen, Belgium Email: Yihwa Kim* - ykim@oist.jp * Corresponding author from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. Published: 13 July 2009 BMC Neuroscience 2009, 10(Suppl 1):P4 doi:10.1186/1471-2202-10-S1-P4

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.