Abstract

Pinsker's inequality states that the relative entropy between two random variables X and Y dominates the square of the total variation distance between X and Y. In this paper, we introduce generalized Fisher information distances and prove that these also dominate the square of the total variation distance. To this end, we introduce a general discrete Stein operator for which we prove a useful covariance identity. We illustrate our approach with several examples. Whenever competitor inequalities are available in the literature, the constants in ours are at least as good, and, in several cases, better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.