Abstract
Butterfly wing color patterns can be changed by the application of a temperature shock or pharmacological agents such as tungstate, producing a distinctive type of elemental modification called the TS (temperature shock) type. Heterochronic uncoupling between the signaling and reception steps during the color-pattern determination process has been proposed as a mechanism for TS-type changes. As an extension of this hypothesis, both the parafocal element (PFE) and the eyespot in the same wing compartment are considered to be determined by morphogenic signal(s) emitted from the same eyespot focus. However, these models need to be examined with additional experimental data. Furthermore, there is controversy as to whether the action of tungstate on wing color patterns is direct or Indirect. Using a species of nymphalid butterfly (Junonia orithya), we have devised a simple method for the local application of pharmacological agents directly on developing wings of pupae. Local tungstate application resulted in reduced eyespots and circular dislocated PFEs in the eyespot-less compartments only on the treated wing, demonstrating that tungstate directly induces color-pattern changes on wings. We further examined the eyespot-PFE relationship in normal and cold-shocked Individuals, showing that an eyespot can be superimposed on a PFE and vice versa, probably depending on the timing of their fate determination. Taken together, we propose a two-morphogen model for the normal color-pattern determination, in which the morphogenic signals for the eyespot and PFE are different from each other despite their Identical origin. This two-morphogen model is compatible with the heterochronic uncoupling model for TS-type changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.