Abstract

A new approach for constructing variational integrators is presented. In the general case, the estimation of the action integral in a time interval [tk,tk+1] is used to construct a symplectic map (qk,qk+1)→(qk+1,qk+2). The basic idea, is that only the partial derivatives of the estimated action integral of the Lagrangian are needed in the general theory. The analytic calculation of these derivatives, gives rise to a new integral that depends on the Euler–Lagrange vector itself (which in the continuous and exact case vanishes) and not on the Lagrangian. Since this new integral can only be computed through a numerical method based on some internal grid points, we can locally fit the exact curve by demanding the Euler–Lagrange vector to vanish at these grid points. Thus, the integral vanishes, and the process dramatically simplifies the calculation of high order approximations. The new technique is tested in high order solutions of the two-body problem with high eccentricity (up to 0.99) and of the outer planets of the solar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.