Abstract

In this paper, we consider the nonparametric estimation of a broad class of quantile regression models, in which the partially linear, additive, and varying coefficient models are nested. We propose for the model a two-stage kernel-weighted least squares estimator by generalizing the idea of local partitioned mean regression (Christopeit and Hoderlein, 2006, Econometrica 74, 787–817) to a quantile regression framework. The proposed estimator is shown to have desirable asymptotic properties under standard regularity conditions. The new estimator has three advantages relative to existing methods. First, it is structurally simple and widely applicable to the general model as well as its submodels. Second, both the functional coefficients and their derivatives up to any given order can be estimated. Third, the procedure readily extends to censored data, including fixed or random censoring. A Monte Carlo experiment indicates that the proposed estimator performs well in finite samples. An empirical application is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.