Abstract

ABSTRACTA local orthogonal polynomial expansion (LOrPE) of the empirical density function is proposed as a novel method to estimate the underlying density. The estimate is constructed by matching localised expectation values of orthogonal polynomials to the values observed in the sample. LOrPE is related to several existing methods, and generalises straightforwardly to multivariate settings. By manner of construction, it is similar to local likelihood density estimation (LLDE). In the limit of small bandwidths, LOrPE functions as kernel density estimation (KDE) with high-order (effective) kernels inherently free of boundary bias, a natural consequence of kernel reshaping to accommodate endpoints. Consistency and faster asymptotic convergence rates follow. In the limit of large bandwidths LOrPE is equivalent to orthogonal series density estimation (OSDE) with Legendre polynomials, thereby inheriting its consistency. We compare the performance of LOrPE to KDE, LLDE, and OSDE, in a number of simulation studies. In terms of mean integrated squared error, the results suggest that with a proper balance of the two tuning parameters, bandwidth and degree, LOrPE generally outperforms these competitors when estimating densities with sharply truncated supports.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.