Abstract

This paper describes an optimal load-shedding method which can be applied to local buses in order to suppress voltage deviations, based on local information obtained at each bus. When a generation outage occurs, adequate amounts of loads must be shed within a few seconds in order to maintain the balance between supply and demand. This method is able to decide quickly the optimal amounts of loads to be shed after the fault. The proposed method is based on the fact that the location of the fault can be estimated exclusively from power flow deviations at local buses, measured after the outage. Because the amounts of load to be shed have constraints, it is necessary to find the optimal factors which decide the amounts of load-shedding at each bus by quadratic programming. To solve this problem we first linearize the study system. Next, in order to relate power flows to voltage deviations at each bus, the voltage sensitivity factors obtained by ac power flow calculation are evaluated. Numerical simulations with 4-machine and 9-machine power system models show the effectiveness of the proposed method. It distributes adequate loads which are almost identical to the completely optimized loads, and it produces smaller voltage deviations than the conventional method. Improved transient characteristics of voltage deviations are also demonstrated. © 1997 Scripta Technica, Inc. Electr Eng Jpn 119(1): 35–44, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.