Abstract

We introduce and demonstrate a novel operating mode in near-field optical microscopy. The tip is used to simultaneously optically probe the sample and induce a highly localized strain in the area under study by pushing the tip into the sample. From knowledge of total tip-sample compression and tip geometry, we estimate the magnitude of stress, and show that localized uniaxial-like stresses in excess of 10 kbar can be achieved. We apply this method to a sample of InAlAs self-assembled quantum dots. A blueshift of quantum dot emission lines consistent with estimates of the strain is observed, as well as a quenching of the photoluminescence with strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.