Abstract

Recently, accurate detection of moving objects has achieved via principal component pursuit (PCP). However, in the case of aerial imagery, existing PCP-based detection methods suffer from low accuracy and/or high computational loads. This paper presents a novel S-PCP method, called local null space pursuit (LNSP), which achieves a high detection accuracy and real-time performance on aerial images. LNSP models the background as a subspace that lies in a low-dimensional subspace, while the moving objects are modelled as sparse. Based on these two models, LNSP proposes a new formulation for the detection problem by using multiple local null spaces and $$\ell _1$$-norm. The performance of LNSP is evaluated on challenging aerial datasets and then compared the results with relevant current state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.