Abstract

Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13) C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression of selected genes was measured in muscle biopsies (5 h and 8 days post-exercise) by real-time reverse transcriptase PCR. Myofibrillar and collagen protein synthesis were unaffected by the local NSAID infusion. Five hours post-exercise, the mRNA expression of cyclooxygenase-2 (COX2) was sixfold higher in the NSAID leg (P=0.016) compared with the unblocked leg. The expression of growth factors and matrix-related genes were unaffected by NSAID. Although NSAIDs inhibit the exercise-induced satellite cell proliferation, we observed only limited effects on gene expression, and on post-exercise protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.