Abstract

An analysis is presented of wave-vector dispersion in elliptically birefringent stratified magneto-optic media having one-dimensional periodicity. It is found that local normal-mode polarization-state differences between adjacent layers lead to mode coupling and affect the wave-vector dispersion and the character of the Bloch states of the system. This coupling produces extra terms in the dispersion relation not present in uniform circularly birefringent magneto-optic stratified media. Normal-mode coupling lifts the degeneracy at frequency band crossover points under certain conditions and induces a magnetization-dependent optical bandgap. This study examines the conditions for bandgap formation in the system. It shows that such a frequency split can be characterized by a simple coupling parameter that depends on the relation between polarization states of local normal modes in adjacent layers. The character of the Bloch states and conditions for maximizing the strength of the band splitting in these systems are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.