Abstract
Combined heat and mass transfer in free, forced and mixed convection flows along a porous wedge with internal heat generation in the presence of uniform suction or injection is investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta-Gill method, the shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power law of temperature and concentration, and suction/injection on the wall of the wedge, the flow field is locally nonsimilar. Numerical calculations up to third-order level of truncation are carried out for different values of dimensionless parameters as a special case. The effects of the buoyancy force, suction, heat generation, and variable wall temperature and concentration on the dimensionless velocity, temperature, and concentration profiles are studied. The results obtained are found to be in good agreement with previously published works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.