Abstract

Combined heat and mass transfer on mixed convection non-similar flow of electrically conducting nanofluid along a permeable vertical plate in the presence of thermal radiation is investigated. The governing partial differential equations of the problem are transformed into a system of non linear ordinary differential equations by applying the Sparrow–Quack–Boerner local non-similarity method (LNM). Furthermore, the obtained equations are solved numerically by employing the Fourth or fifth order Runge Kutta Fehlberg method with conjunction to shooting technique. The profiles of flow and heat transfer are verified by using five types of nanofluids of which metallic or nonmetallic nanoparticles, namely Copper (Cu), Alumina (Al2O3), Copper oxide (CuO), silver (Ag) and Titanium (TiO2) with a water-based fluid. Rosseland approximation model on black body is used to represent the radiative heat transfer. Effects of thermal radiation, buoyancy force parameters and volume fraction of nanofluid on the velocity and temperature profiles in the presence of suction/injection are depicted graphically. Comparisons with previously published works are performed, and excellent agreement between the results is obtained. The conclusion is that the flow fields is affected by these parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.