Abstract
Local feature descriptors are efficient encoders for capturing repeated local patterns in many of the computer vision applications. Majority of such descriptors consider only limited local neighborhood pixels to encode a pattern. One of the major issues while considering more number of neighborhood pixels is that it increases the dimensionality of the feature descriptor. The proposed descriptor addresses these issues by describing an effective encoding pattern with optimal feature vector length. In this paper, we have proposed Local Neighborhood Gradient Pattern (LNGP) for Content-Based Image Retrieval (CBIR) in which the relationship between a set of neighbours and the centre pixel is considered to obtain a compact 8-bit pattern in the respective pixel position. The relationship of the gradient information of immediate, next-immediate, and diagonal neighbours with the centre pixel is considered for pattern formation, and thus the local information based on pixels in three directions are captured. The experiments are conducted on benchmarked image retrieval datasets such as Wang’s 1K, Corel 5K, Corel 10K, Salzburg (Stex), MIT-Vistex, AT & T, and FEI datasets and it is observed that the proposed descriptor yields average precision of 71.88%, 54.57%, 40.66%, 71.85%, 86.12%, 82.54%, and 68.54% respectively in the mentioned datasets. The comparative analysis of the recent descriptors indicates that the proposed descriptor performs efficiently in CBIR applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.