Abstract
Selecting functional genes is essential for analyzing microarray data. Among many available feature (gene) selection approaches, the ones on the basis of the large margin nearest neighbor receive more attention due to their low computational costs and high accuracies in analyzing the high-dimensional data. Yet, there still exist some problems that hamper the existing approaches in sifting real target genes, including selecting erroneous nearest neighbors, high sensitivity to irrelevant genes, and inappropriate evaluation criteria. Previous pioneer works have partly addressed some of the problems, but none of them are capable of solving these problems simultaneously. In this paper, we propose a new local-nearest-neighbors-based feature weighting approach to alleviate the above problems. The proposed approach is based on the trick of locally minimizing the within-class distances and maximizing the between-class distances with the nearest neighbors rule. We further define a feature weight vector, and construct it by minimizing the cost function with a regularization term. The proposed approach can be applied naturally to the multi-class problems and does not require extra modification. Experimental results on the UCI and the open microarray data sets validate the effectiveness and efficiency of the new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.