Abstract
<abstract> <p>Resolving set has several applications in the fields of science, engineering, and computer science. One application of the resolving set problem includes navigation robots, chemical structures, and supply chain management. Suppose the set $ W = \left\{{s}_{1}, {s}_{2}, \dots , {s}_{k}\right\}\subset V\left(G\right) $, the vertex representations of $ x\in V\left(G\right) $ is $ {r}_{m}\left(x\right|W) = \{d(x, {s}_{1}), d(x, {s}_{2}), \dots , d(x, {s}_{k})\} $, where $ d(x, {s}_{i}) $ is the length of the shortest path of the vertex $ x $ and the vertex in $ W $ together with their multiplicity. The set $ W $ is called a local $ m $-resolving set of graphs $ G $ if $ {r}_{m}\left(v|W\right)\ne {r}_{m}\left(u\right|W) $ for $ uv\in E\left(G\right) $. The local $ m $-resolving set having minimum cardinality is called the local multiset basis and its cardinality is called the local multiset dimension of $ G $, denoted by $ m{d}_{l}\left(G\right) $. In our paper, we determined the bounds of the local multiset dimension of the comb product of tree graphs.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.