Abstract

In this paper, natural convection flows in concentric and eccentric annuli are studied using a new numerical method, namely local moving least square-one dimensional integrated radial basis function networks (LMLS-1D-IRBFN). The partition of unity method is used to incorporate the moving least square (MLS) and one dimensional-integrated radial basis function (1D-IRBFN) techniques in an approach that leads to sparse system matrices and offers a high level of accuracy as in the case of 1D-IRBFN method. The present method possesses a Kronecker-Delta function property which helps impose the essential boundary condition in an exact manner. The method is first verified by the solution of the two-dimensional Poisson equation in a square domain with a circular hole, then applied to natural convection flow problems. Numerical results obtained are in good agreement with the exact solution and other published results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.