Abstract

During smooth pursuit eye movements, briefly presented objects are mislocalized in the direction of motion. It has been proposed that the localization error is the sum of the pursuit signal and the retinal motion signal in a ~200 ms interval after flash onset. To evaluate contributions of retinal motion signals produced by the entire object (global motion) and elements within the object (local motion), we asked observers to reach to flashed Gabor patches (Gaussian-windowed sine-wave gratings). Global motion was manipulated by varying the duration of a stationary flash, and local motion was manipulated by varying the motion of the sine-wave. Our results confirm that global retinal motion reduces the localization error. The effect of local retinal motion on object localization was far smaller, even though local and global motion had equal effects on eye velocity. Thus, local retinal motion has differential access to manual and oculomotor control circuits. Further, we observed moderate correlations between smooth pursuit gain and localization error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call