Abstract

We have used nuclear quadrupole resonance (NQR) to probe microscopically the response of a prototypical quantum critical metal CeCoIn5 to substitutions of small amounts of Cd for In. Approximately half of the Cd substituents induce local Ce moments in their close proximity, as observed by site-dependent longitudinal nuclear spin relaxation rates 1/T1. To reaffirm that localized f moments are induced around the Cd substituents, we find a Gaussian spin-echo decay rate 1/T2G of transverse nuclear spin relaxation. Further, for the NQR subpeak is found to be proportional to temperatures, again indicating local moments fluctuations around the Cd substituents, while that for the NQR main peak shows a T0.7-dependence. The latter temperature dependence is close to 0.75 in pure CeCoIn5 and indicates that the bulk electronic state is located close to a two dimensional quantum critical instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.