Abstract

The local modification of intermolecular interactions in nickel-phthalocyanine molecules (NiPCs) is investigated on an Au(111) substrate using scanning tunneling microscopy. When the molecules are physisorbed on the substrate, they repel each other due to induced charge dipole moments. However, when the NiPC is chemisorbed on the substrate through the dehydrogenation of one of its ligands by a bias pulse, we find that a nearby physisorbed NiPC is attracted to the dehydrogenated ligand and trapped. Using our experimental results in combination with density functional theory calculations, we show that the observed attraction can be ascribed to the local charge redistribution around the dehydrogenated ligand of the chemisorbed NiPC. Furthermore, we demonstrate that desorption of the attracted NiPC from the trapped site can be readily controlled by changing the density of NiPCs around the dehydrogenated ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call