Abstract

The local dynamics and organization of micelles of new long-chain cationic surfactants with saturated hydrocarbon fragments (from C16 to C22) are investigated via the EPR spin-probe technique. The local mobility of spin probes in the hydrocarbon core of a micelle changes insignificantly, while the order parameter noticeably increases with lengthening of the hydrocarbon fragment of the surfactant molecule. The specific features of the interaction of the surfactants with network junctions of the gels formed by two types of hydrophobically modified polyacrylamides—either containing charged groups (sodium acrylate) in the backbone or lacking these groups—are studied. In both cases, the local mobility of network junctions of the gel increases after the introduction of the surfactant (C18). Moreover, for surfactant with a long alkyl group (C2), the microscopic viscosity of the gel based on the uncharged polymer decreases, although the local mobility of the network junctions increases. Possible causes of the observed specific features are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.