Abstract

We study the sunset Feynman integral defined as the scalar two-point self-energy at two-loop order in a two dimensional space-time.We firstly compute the Feynman integral, for arbitrary internal masses, in terms of the regulator of a class in the motivic cohomology of a $1$-parameter family of open elliptic curves. Using an Hodge theoretic (B-model) approach, we show that the integral is given by a sum of elliptic dilogarithms evaluated at the divisors determined by the punctures.Secondly we associate to the sunset elliptic curve a local non-compact Calabi–Yau 3-fold, obtained as a limit of elliptically fibered compact Calabi–Yau 3-folds. By considering the limiting mixed Hodge structure of the Batyrev dual A-model, we arrive at an expression for the sunset Feynman integral in terms of the local Gromov–Witten prepotential of the del Pezzo surface of degree $6$. This expression is obtained by proving a strong form of local mirror symmetry which identifies this prepotential with the second regulator period of the motivic cohomology class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.