Abstract

The numerical realization of the dynamic programming principle for continuous-time optimal control leads to nonlinear Hamilton--Jacobi--Bellman equations which require the minimization of a nonlinear mapping over the set of admissible controls. This minimization is often performed by comparison over a finite number of elements of the control set. In this paper we demonstrate the importance of an accurate realization of these minimization problems and propose algorithms by which this can be achieved effectively. The considered class of equations includes nonsmooth control problems with $\ell_1$-penalization which lead to sparse controls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.