Abstract

In recent years, time-frequency analysis (TFA) methods have received widespread attention and undergone rapid development. However, traditional TFA methods cannot achieve the desired effect when dealing with nonstationary signals. Therefore, this study proposes a new TFA method called the local maximum synchrosqueezing scaling-basis chirplet transform (LMSBCT), which is a further improvement of the scaling-basis chirplet transform (SBCT) with energy rearrangement in frequency and can be viewed as a good combination of SBCT and local maximum synchrosqueezing transform. A better concentration in terms of the time-frequency energy and a more accurate instantaneous frequency trajectory can be achieved using LMSBCT. The time-frequency distribution of strong frequency-modulated signals and multicomponent signals can be handled well, even for signals with close signal frequencies and low signal-to-noise ratios. Numerical simulations and real experiments were conducted to prove the superiority of the proposed method over traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.