Abstract

Mass transfer during electrodialysis with ion-conducting spacers in the intermembrane gap is modeled experimentally using a local-distribution analysis of solutions. Due to emergence of back-flow regions near the spacers, local quantities (diffusion layer thicknesses, surface concentrations, Sherwood numbers) are distributed nonuniformly over the channel length. In a smooth channel, due to concentration polarization, local mass transfer rates steadily decrease along the solution supply coordinate, but introducing ion-conducting spacers into the channel intensifies mass transfer because of periodic interruption of diffusion layers and formation of recirculation zones. Effect of geometrical size of spacers on the mass transfer is studied. It is found that the mass transfer rate is maximum for ion-conducting spacers with the ratio 3.5 < l/h< 4.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.