Abstract

Local mass transfer correlations are developed to describe the rate of interface mass transfer of single component nonaqueous phase liquid (NAPL) pools in saturated subsurface formations. A three-dimensional solute transport model is employed to compute local mass transfer coefficients from concentration gradients at the NAPL-water interface, assuming that the aqueous phase concentration along the NAPL-water interface is constant and equal to the solubility concentration. Furthermore, it is assumed that the porous medium is homogeneous, the interstitial fluid velocity steady and the dissolved solute may undergo first-order decay or may sorb under local equilibrium conditions. Power-law expressions relating the local Sherwood number to appropriate local Peclet numbers are developed for both rectangular and elliptic/circular source geometries. The proposed power law correlations are fitted to numerically generated data and the correlation coefficients are determined using nonlinear least squares regression. The estimated correlation coefficients are found to be direct functions of the interstitial fluid velocity, pool dimensions, and pool geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.