Abstract

Topological states of matter were first introduced for non-interacting fermions on an infinite uniform lattice. Since then, substantial effort has been made to generalize these concepts to more complex settings. Recently, local markers have been developed that can describe the topological state of systems without translational symmetry and well-defined gap. However, no local marker for interacting matter has been proposed yet that is capable of directly addressing an interacting system. Here we suggest such a many-body local marker based on the single-particle Green's function. Using this marker we identify topological transitions in finite lattices of a Chern insulator with Anderson disorder and Hubbard interactions. Importantly, our proposal can be straightforwardly generalised to non-equilibrium systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call