Abstract

We explore, with unprecedented single vortex resolution, the dissipation and motion of vortices in a superconducting ribbon under the influence of an external alternating magnetic field. This is achieved by combining the phase sensitive character of ac susceptibility, allowing us to distinguish between the inductive and dissipative responses, with the local power of scanning Hall probe microscopy. Whereas the induced reversible screening currents contribute only inductively, the vortices do leave a fingerprint in the out-of-phase component. The observed large phase-lag demonstrates the dissipation of vortices at time scales comparable to the period of the driving force (i.e., 13 ms). These results indicate the presence of slow microscopic loss mechanisms mediated by thermally activated hopping transport of vortices between metastable states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.