Abstract
Lattice Gauge Theories form a very successful framework for studying nonperturbative gauge field physics, in particular in Quantum Chromodynamics. Recently, their quantum simulation on atomic and solid-state platforms has been discussed, aiming at overcoming some of the difficulties still faced by the conventional approaches (such as the sign problem and real time evolution). While the actual implementations of a lattice gauge theory on a quantum simulator may differ in terms of the simulating system and its properties, they are all directed at studying similar physical phenomena, requiring the measurement of nonlocal observables, due to the local symmetry of gauge theories. In this work, general schemes for measuring such nonlocal observables (Wilson loops and mesonic string operators) in general lattice gauge theory quantum simulators that are based merely on local operations are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.