Abstract

The gas sensor drift problem arises from the bias of data, which is known as a significant problem in the artificial olfactory community. Traditionally, hardware calibration methods are laborious and ineffective due to frequent recalibration actions involving different gases, and some calibration transfer and baseline calibration methods are not effective enough. In this work, a local manifold embedding cross-domain subspace learning (LME-CDSL) model is proposed based on domain distribution alignment. It is a unified subspace learning model combined with manifold learning and domain adaptation, which tends to explore a latent transform matrix that not only enforces the drifted target domain data to learn the manifold of nondrifted source domain data but also adopts the domain adaptation method to align the domain data distribution. In general, the LME-CDSL model has three features: 1) the unsupervised and adaptation distribution subspace projection can be easily computed through eigenvector decomposition; 2) the local linear manifold learns to achieve the compact representations of high-dimensional data and is capable of preserving the local features of nondrifted samples; and 3) the domain adaptation part utilizes the maximum mean discrepancy (MMD) and variance maximization to make the sample distributions of different domains more similar and preserve the intrinsic properties. For long-term and short-term drift compensation on a single E-nose system, the local manifold embedding cross-domain subspace learning (LME-CDSL) model obtains the average recognition accuracy of 70.95% and 74.09%, respectively, while 71.71% and 73.96%, respectively for multiple identical E-nose systems with both long-term and interplate drift, which are higher than several comparative methods and proves the its effectiveness and superiority on anti-drift and gas recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.