Abstract
Polarized neutron diffraction allows to determine the local susceptibility tensor on the magnetic site both in single crystals and powders. It is widely used in the studies of single crystals, but it is still hardly applicable to a number of highly interesting powder materials, like molecular magnets or nanoscale systems because of the low luminosity of existing instruments and the absence of an appropriate data analysis software. We show that these difficulties can be overcome by using a large area detector in combination with the two-dimensional Rietveld method and powder samples with magnetically induced preferred crystallite orientation. This is demonstrated by revisiting two test powder compounds, namely, low anisotropy (soft) ferrimagnetic compound Fe3O4 and spin-ice compound Ho2Ti2O7 with high local anisotropy. The values of magnetic moments in Fe3O4 and the susceptibility tensors of Ho2Ti2O7 at various temperatures and fields were found in perfect agreement with these found earlier in single crystal experiments. The magnetically induced preferred crystallite orientation was used to study the local susceptibility of a single-molecule magnet Co([(CH3)2N]2CS)2Cl2. Hence, the studies of local magnetic anisotropy in powder systems might now become accessible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.