Abstract

BackgroundLocal hemodynamic factors are important determinants of atherosclerotic plaque development and progression. ObjectivesThe goal of this study was to determine the association between low endothelial shear stress (ESS) and microvascular and epicardial endothelial dysfunction in patients with early atherosclerosis. MethodsSixty-five patients (mean age 52 ± 11 years) with nonobstructive coronary atherosclerosis (luminal diameter stenosis <30%) were included. Microvascular and epicardial coronary endothelial function was assessed by using intracoronary acetylcholine infusion. Vascular profiling, using 2-plane coronary angiography and intravascular ultrasound, was used to reconstruct the three-dimensional anatomy of the left anterior descending artery. Each reconstructed artery was divided into sequential 3-mm segments and analyzed for local ESS with computational fluid dynamics; that is, lower ESS levels at both a 3-mm regional level (average ESS and low ESS) and at a vessel level (lowest ESS per artery) and for plaque characteristics (plaque area, plaque thickness, and plaque burden). ResultsCoronary segments in arteries with abnormal microvascular function exhibited lower ESS compared with segments in arteries with normal microvascular function (average ESS: 1.67 ± 1.04 Pa vs. 2.03 ± 1.72 Pa [p = 0.050]; lowest ESS: 0.54 ± 0.25 Pa vs. 0.72 ± 0.32 Pa [p = 0.014]). Coronary segments in arteries with abnormal epicardial endothelial function also exhibited significantly lower ESS compared with segments in arteries with normal epicardial function (average ESS: 1.49 ± 0.89 Pa vs. 1.93 ± 1.50 Pa [p < 0.0001]; low ESS: 1.26 ± 0.81 Pa vs. 1.56 ± 1.30 Pa [p = 0.001]; lowest ESS: 0.51 ± 0.27 Pa vs. 0.65 ± 0.29 Pa [p = 0.080]). Patients with abnormal microvascular endothelial function exhibited a progressive decrease in average and low ESS, starting from patients with normal epicardial endothelial function to those with both microvascular and epicardial endothelial dysfunction (p < 0.0001 and p = 0.004, respectively). ConclusionsThese data indicate an association between dysfunction of the microvascular and epicardial endothelium and local ESS at the early stages of coronary atherosclerosis in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call