Abstract

Closed-loop disturbance rejection without sacrificing overall system performance is a fundamental issue in a wide range of applications from precision motion control, active noise cancellation, to advanced manufacturing. The core of rejecting band-limited disturbances is the shaping of feedback loops to actively and flexibly respond to different disturbance spectra. However, such strong and flexible local loop shaping (LLS) has remained underdeveloped for systems with nonminimum-phase zeros due to challenges to invert the system dynamics. This article proposes an LLS with prescribed performance requirements in systems with nonminimum-phase zeros. Pioneering an integration of the interpolation theory with a model-based parameterization of the closed loop, the proposed solution provides a filter design to match the inverse plant dynamics locally and, as a result, creates a highly effective framework for controlling both narrowband and wideband vibrations. From there, we discuss methods to control the fundamental waterbed limitation, verify the algorithm on a laser beam steering platform in selective laser sintering additive manufacturing, and compare the benefits and tradeoffs over the conventional direct inverse-based loop-shaping method. The results are supported by both simulation and experimentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call