Abstract

In this paper, we give efficient algorithms for list-decoding and testing random linear codes. Our main result is that random sparse linear codes are locally list-decodable and locally testable in the high-error regime with only a constant number of queries. More precisely, we show that for all constants $c> 0$ and $\gamma > 0$, and for every linear code $\mathcal C \subseteq \{0,1\}^N$ which is (1) sparse: $|\mathcal C| \leq N^c$, and (2) unbiased: each nonzero codeword in $\mathcal C$ has weight $\in (\frac{1}{2} - N^{-\gamma}, \frac{1}{2} + N^{-\gamma})$, then $\mathcal C$ is locally testable and locally list-decodable from $(\frac{1}{2} - \epsilon)$-fraction worst-case errors using only ${ {poly}}(\frac{1}{\epsilon})$ queries to a received word. We also give subexponential time algorithms for list-decoding arbitrary unbiased (but not necessarily sparse) linear codes in the high-error regime. In particular, this yields the first subexponential time algorithm even for the problem of (unique) decoding ra...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.