Abstract

There is a class of nonlinear filtering algorithms for digital colour enhancement, characterised by data-driven local effects and high computational cost. A new method called LLL (local linear look-up table (LUT)) is presented, which speeds up these filters without losing their local effect. Usually, classic LUT-based methods are global whereas the approach presented here uses the principles of LUT transformation in a local way. The main idea of this method is to apply the colour-enhancement algorithm to a small sub-sampled version of the input image and to use a modified look-up table technique to maintain the local filtering effect of the colour-enhancement algorithm. The method increases the speed of colour-filtering algorithms, reducing the number of pixels involved in the computation by sub-sampling the input image. To overcome possible loss of detail due to sub-sampling, an optional, additional stage to maintain high-frequency content is shown. LLL with two of these filters, the Brownian Retinex implementation and the automatic colour equalisation algorithm, are tested. Results, comparison and conclusions are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.