Abstract
Random forests are a powerful method for nonparametric regression, but are limited in their ability to fit smooth signals. Taking the perspective of random forests as an adaptive kernel method, we pair the forest kernel with a local linear regression adjustment to better capture smoothness. The resulting procedure, local linear forests, enables us to improve on asymptotic rates of convergence for random forests with smooth signals, and provides substantial gains in accuracy on both real and simulated data. We prove a central limit theorem valid under regularity conditions on the forest and smoothness constraints, and propose a computationally efficient construction for confidence intervals. Moving to a causal inference application, we discuss the merits of local regression adjustments for heterogeneous treatment effect estimation, and give an example on a dataset exploring the effect word choice has on attitudes to the social safety net. Last, we include simulation results on real and generated data. A software implementation is available in the R package grf. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational and Graphical Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.