Abstract

Let {S n ; n ≥ 0} be an asymptotically stable random walk and let M n denote it’s maximum in the first n steps. We show that the asymptotic behaviour of local probabilities for M n can be approximated by the density of the maximum of the corresponding stable process if and only if the renewal mass-function based on ascending ladder heights is regularly varying at infinity. We also give some conditions on the random walk, which guarantee the desired regularity of the renewal mass-function. Finally, we give an example of a random walk, for which the local limit theorem for M n does not hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.