Abstract

We consider a class of Markov processes with resettings, where at random times, the Markov processes are restarted from a predetermined point or a region. These processes are frequently applied in physics, chemistry, biology, economics, and in population dynamics. In this paper, we establish the local large deviation principle (LLDP) for the Wiener processes with random resettings, where the resettings occur at the arrival time of a Poisson process. Here, at each resetting time, a new resetting point is selected at random, according to a conditional distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.