Abstract
Region-based Convolutional Neural Network (R-CNN) detectors have achieved state-of-the-art results on various challenging benchmarks. Although R-CNN has achieved high detection performance, the research of local information in producing candidates is insufficient. In this paper, we design a Keypoint-based Faster R-CNN (K-Faster) method for object detection. K-Faster incorporates local keypoints in Faster R-CNN to improve the detection performance. In detail, a sparse descriptor, which first detects the points of interest in a given image and then samples a local patch and describes its invariant features, is first employed to produce keypoints. All 2-combinations of the produced keypoints are second selected to generate keypoint anchors, which are helpful for object detection. The heterogeneously distributed anchors are then encoded in feature maps based on their areas and center coordinates. Finally, the keypoint anchors are coupled with the anchors produced by Faster R-CNN, and the coupled anchors are used for Region Proposal Network (RPN) training. Comparison experiments are implemented on PASCAL VOC 07/12 and MS COCO. The experimental results show that our K-Faster approach not only increases the mean Average Precision (mAP) performance but also improves the positioning precision of the detected boxes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.