Abstract

Interfacial fracture is a critical issue for extensive applications of adhesively bonded structures to a variety of modern industries. Extensive global experimental tests have been conducted to measure the global behavior of adhesively bonded joint, such as ultimate load capacity and toughness. Recently, several studies have also been employed to characterize the local interfacial traction–separation laws. However, very few tests have investigated the dependency of the local interfacial constitutive laws on the adhesive thickness, particularly, under Mode-II loading conditions. In this work, six typical adhesive thicknesses (from 0.1 mm to 1.0 mm) are prepared for the bonded joints with a configuration of end notched flexure (ENF) specimen to realize the Mode-II fracture loading (shear fracture). With a recently developed analytical model, the global energy release rates of the ENF specimens are experimentally measured. Meanwhile, with the image analysis technique, the local slips between the two adherends are obtained. Finally, based on the J-integral theory, the local interfacial constitutive laws at different bondline thicknesses are obtained. Several experimental findings are reported in this work. This work may provide valuable baseline experimental data for the input in cohesive zone model (CZM) based analytical and numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.