Abstract
Two types of errors are one of the important topics in hypothesis testing. Studying the two types of errors is not only studying how the procedure determines the probability of making an error, but it is very important to study the theoretical concepts of the two types of errors. To achieve this goal, a learning design is needed that can facilitate students to construct their own concepts of the two types of errors. The learning design developed is local instructional theory resulting from the cyclic process of hypothetical learning trajectory. The type of research used is design research using the model developed by Gravemeijer and Cobb. The test subjects used in this study were students of the Ma thematics Education Study Program, FMIPA UNP who took the Elementary Statistics Course in the July – December 2019 semester. This research resulted in a very practical local instructional theory used to facilitate students in carrying out horizontal and vertical mathematization processes, so that students are able to construct their own concepts of two types of errors in hypothesis testing.
Highlights
Kerangka Kualifikasi Nasional Indonesia (KKNI) menetapkan bahwa Pendidikan Sarjana paling rendah harus memiliki jenjang kualifikasi Level 6
how the procedure determines the probability of making an error
important to study the theoretical concepts of the two types of errors
Summary
Tabel 1 memperlihatkan terdapat dua tipe kesalahan dalam pengujian hipotesis, yaitu Kesa lahan Jenis I (Galat Jenis I) dan Kesalahan Jenis II (Galat Jenis II). Van den Heuvel & Drijver (2020) menguraikan enam prinsp pembelajaran berbasis RME, yaitu: (1) Prinsip aktivitas (Activity principle), maha siswa diperlakukan sebagai peserta aktif dalam proses pembelajaran; (2) prinsip realitas (reality principle), belajar matematika harus dimulai dari masalah kontekstual yang nyata dalam pi kiran mahasiswa; (3) prinsip level (level prin ciple), belajar matematika berarti melewati bebe rapa tingkat/level; (4) prinsip keterkaitan (inter twinement principle), mengintegrasikan berba gai topik matematika dalam satu kegiatan pem belajaran; (5) prinsip interaktivitas (interactivity principle), pembelajaran matematika tidak ha nya merupakan aktivitas individu tetapi juga akti vitas sosial; dan (6) prinsip bimbingan (guidan ce principle), penemuan kembali secara terbim bing. Pada artikel ini dipaparkan proses desain HLT berbasis RME pada topik dua tipe kesalah an dalam pengujian hipotesis, sehingga mengha silkan Local Instructional Theory yang praktis (dapat digunakan, mudah digunakan, dan memili ki daya tarik)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.