Abstract

We describe a new method of infrared microspectroscopy. It is intended for performing chemical mapping of various objects with subwavelength lateral resolution by using the infrared vibrational signature characterizing different molecular species. We use the photothermal expansion effect, detected by an atomic force microscope tip, probing the local transient deformation induced by an infrared pulsed laser tuned at a sample absorbing wavelength. We show that this new tool opens the way for measuring and identifying spectroscopic contrasts not accessible by far-field or near-field optical methods and with a subwavelength lateral resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call